Backward Euler discretization of fully nonlinear parabolic problems
نویسندگان
چکیده
This paper is concerned with the time discretization of nonlinear evolution equations. We work in an abstract Banach space setting of analytic semigroups that covers fully nonlinear parabolic initial-boundary value problems with smooth coefficients. We prove convergence of variable stepsize backward Euler discretizations under various smoothness assumptions on the exact solution. We further show that the geometric properties near a hyperbolic equilibrium are well captured by the discretization. A numerical example is given.
منابع مشابه
Convergence of a Full Discretization of Quasi-linear Parabolic Equations in Isotropic and Anisotropic Orlicz Spaces
Abstract. Convergence of a full discretization is shown for a general class of nonlinear parabolic November 10, 2011 problems. The numerical method combines the backward Euler method for the time discretization with a generalized internal approximation scheme for the spatial discretization. The governing monotone elliptic differential operator is described by a nonlinearity that may have anisot...
متن کاملSuperconvergence of Fully Discrete Finite Elements for Parabolic Control Problems with Integral Constraints
A quadratic optimal control problem governed by parabolic equations with integral constraints is considered. A fully discrete finite element scheme is constructed for the optimal control problem, with finite elements for the spatial but the backward Euler method for the time discretisation. Some superconvergence results of the control, the state and the adjoint state are proved. Some numerical ...
متن کاملPii: S0168-9274(01)00161-1
In this paper, we study time discretizations of fully nonlinear parabolic differential equations. Our analysis uses the fact that the linearization along the exact solution is a uniformly sectorial operator. We derive smooth and nonsmooth-data error estimates for the backward Euler method, and we prove convergence for strongly A(θ)stable Runge–Kutta methods. For the latter, the order of converg...
متن کاملA numerical scheme for solving nonlinear backward parabolic problems
In this paper a nonlinear backward parabolic problem in one dimensional space is considered. Using a suitable iterative algorithm, the problem is converted to a linear backward parabolic problem. For the corresponding problem, the backward finite differences method with suitable grid size is applied. It is shown that if the coefficients satisfy some special conditions, th...
متن کاملNonsmooth Data Error Estimates with Applications to the Study of the Long-time Behavior of Finite Element Solutions of Semilinear Parabolic Problems
A rather general semilinear parabolic problem is studied together with its spatially semidiscrete nite element approximation. Both problems are formulated within the framework of nonlinear semigroups in the Sobolev space H 1 ((). The main result is an error estimate for solutions with initial data in H 1 ((), valid during an arbitrary nite time interval. The proof is based on the semigroup form...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 71 شماره
صفحات -
تاریخ انتشار 2002